87 research outputs found

    Cloud-based video analytics using convolutional neural networks.

    Get PDF
    Object classification is a vital part of any video analytics system, which could aid in complex applications such as object monitoring and management. Traditional video analytics systems work on shallow networks and are unable to harness the power of distributed processing for training and inference. We propose a cloud‐based video analytics system based on an optimally tuned convolutional neural network to classify objects from video streams. The tuning of convolutional neural network is empowered by in‐memory distributed computing. The object classification is performed by comparing the target object with the prestored trained patterns, generating a set of matching scores. The matching scores greater than an empirically determined threshold reveal the classification of the target object. The proposed system proved to be robust to classification errors with an accuracy and precision of 97% and 96%, respectively, and can be used as a general‐purpose video analytics system

    An empirical evaluation of adversarial robustness under transfer learning

    Get PDF
    In this work, we evaluate adversarial robustness in the context of transfer learning from a source trained on CIFAR 100 to a target network trained on CIFAR 10. Specifically, we study the effects of using robust optimisation in the source and target networks. This allows us to identify transfer learning strategies under which adversarial defences are successfully retained, in addition to revealing potential vulnerabilities. We study the extent to which features learnt by a fast gradient sign method (FGSM) and its iterative alternative (PGD) can preserve their defence properties against black and white-box attacks under three different transfer learning strategies. We find that using PGD examples during training on the source task leads to more general robust features that are easier to transfer. Furthermore, under successful transfer, it achieves 5.2% more accuracy against white-box PGD attacks than suitable baselines. Overall, our empirical evaluations give insights on how well adversarial robustness under transfer learning can generalise

    Context caches in the clouds

    Get PDF
    In context-aware systems, the contextual information about human and computing situations has a strong temporal aspect i.e. it remains valid for a period of time. This temporal property can be exploited in caching mechanisms that aim to exploit such locality of reference. However, different types of contextual information have varying temporal validity durations and a varied spectrum of access frequencies as well. Such variation affects the suitability of a single caching strategy and an ideal caching mechanism should utilize dynamic strategies based on the type of context data, quality of service heuristics and access patterns and frequencies of context consuming applications. This paper presents an investigation into the utility of various context-caching strategies and proposes a novel bipartite caching mechanism in a Cloud-based context provisioning system. The results demonstrate the relative benefits of different caching strategies under varying context usage scenarios. The utility of the bipartite context caching mechanism is established both through simulation and deployment in a Cloud platform

    Energy Performance Assessment of Virtualization Technologies Using Small Environmental Monitoring Sensors

    Get PDF
    The increasing trends of electrical consumption within data centres are a growing concern for business owners as they are quickly becoming a large fraction of the total cost of ownership. Ultra small sensors could be deployed within a data centre to monitor environmental factors to lower the electrical costs and improve the energy efficiency. Since servers and air conditioners represent the top users of electrical power in the data centre, this research sets out to explore methods from each subsystem of the data centre as part of an overall energy efficient solution. In this paper, we investigate the current trends of Green IT awareness and how the deployment of small environmental sensors and Site Infrastructure equipment optimization techniques which can offer a solution to a global issue by reducing carbon emissions

    Procesado de aceite de oliva y aceite de orujo

    Get PDF
    Olive oil processing is introduced in food industry at the end of the nineteenth century and a lot of improvements have been initialized since. The steps for refining are, settling, neutralizing, bleaching and deodorizing. Monitoring of effective refining and the use of processes that remove less minor components of olive oil, like polyphenols and tocopherols are some issues for the process. The stringent environmental requirements and the target of industry for continuous improvements and cost savings, forcing equipment manufacturers to innovations and new products. The complete removal of polycyclic aromatic hydrocarbons during pomace oil process and the utilization of distillates are also important areas for research and development.El procesado del aceite de oliva se introdujo en la industria alimentaria a finales del siglo diecinueve y desde entonces se han realizado considerables mejoras. Los pasos de refinación son: decantado, neutralización, decoloración, y desodorización. La monitorización de una refinación efectiva así como el uso de procesos que eliminen una menor proporción de componentes menores del aceite de oliva, tales como polifenoles y tocoferoles, son algunos de los objetivos del proceso. La rigurosa normativa medioambiental y el interés de la industria por introducir mejoras y ahorro de costes han forzado a los fabricantes de equipos a innovar y desarrollar nuevos productos. La eliminación completa de los hidrocarburos aromáticos policíclicos durante el refinado del aceite de orujo y la utilización de los destilados son también áreas importantes de investigación y desarrollo

    Mobilouds: An Energy Efficient MCC Collaborative Framework With Extended Mobile Participation for Next Generation Networks

    Get PDF
    Given the emergence of mobile cloud computing (MCC), its associated energy implications are witnessed at larger scale. With offloading computationally intensive tasks to the cloud datacentres being the basic concept behind MCC, most of the mobile terminal resources participating in the MCC collaborative execution are wasted as they remain idle until the mobile terminals receive responses from the datacentres. This is an additional wastage of resources alongside the cloud resources are already being addressed as massive energy consumers. Though the energy consumed of the idle mobile resources is insignificant in comparison with the cloud counterpart, such consumptions have drastic impacts on the mobile devices causing unnecessary battery drains. To this end, this paper proposes Mobilouds which encompass a multi-tier processing architecture with various levels of process cluster capacities and a software application to manage energy efficient utilization of such process clusters. Our proposed Mobilouds framework encourages the mobile device participation in the MCC collaborative execution, thereby reduces the presence of idle mobile resources and utilizes such idle resources in the actual task execution. Our performance evaluation results demonstrate that the Mobilouds framework offers the most energy-time balancing process clusters for task execution by effectively utilizing the available resources, in comparison with an entire cloud offloading strategy using 5G/4G networks
    corecore